Events

Colloquium, Seminars and Talks

Colloquium | Seminars | Talks

Colloquium of the Department of Mathematics

Department, Colloquium |

Department Colloquium Summer 2024

International researchers present their current work at the Colloquium of the Department of Mathematics. It will take place in lecture hall 3 (MI 00.06.011) on 10 July 2024. During the break, coffee, tea and pretzels will be served in the Magistrale.… [read more]

Seminars at the Department of Mathematics

Vorträge aus dem Münchner Mathematischer Kalender

27.05.2024 15:00 Nicola Vassena: Finding bifurcations in reaction networks with parameter-rich kinetics

Biochemical reaction networks, e.g. of metabolic type, may comprise hundreds of species and reactions. On the other hand, reactions are typically not expressed in an elementary form: their rates are consequently not in mass-action form but they involve more parameters as e.g. Michaelis-Menten kinetics. In this talk, I present an approach to understand the possible range dynamics of such networks, which exploits the parameter richness of the reaction rates. At a fixed equilibrium, we rescale the partial derivatives appearing in the Jacobian to highlight change of stabilities and bifurcations, with consequent nearby dynamics. In essence, we identify fast `leading’ subnetworks that drives the dynamics into an unstable region, causing the occurrence of specific bifurcations.
Source

27.05.2024 16:30 Julius Hallmann: Asymptotic Analysis of Randomized Epidemic Processes

This talk is concerned with the following epidemic process: A set of nodes is partitioned into three states: susceptible, infectious, and recovered. We start with a single infectious node. Proceeding in rounds whose length is antiproportional to the population size, a fixed amount of nodes are drawn independently at random. If at least one of the selected nodes is infectious, every susceptible node in the sample becomes infected. Moreover, any infectious vertex recovers independently at a constant rate. If the expected amount of infections caused by single node is less than one, the epidemic dies out quickly and leaves almost the entire population untouched. If it is above one, either the infection dies out quickly or a large outbreak occurs, during which a non-vanishing fraction of the population is affected. Moreover, if enough nodes are infectious at the same time, the system’s behaviour is essentially deterministic.
Source

28.05.2024 16:00 Mia Runge: General properties of (r,D,R)-Blaschke-Santaló Diagrams in arbitrary Minkowski spaces

We study Blaschke-Santaló diagrams for the inradius, circumradius and diameter in general Minkowski spaces. Independent of the gauge, they can be described by at most five parts of boundaries. We analyse which bodies fill these bounds and for which gauges they become redundant. Furthermore, we give a complete description of the union over all these diagrams with respect to planar symmetric gauges (solving an open problem stated by Brandenberg and Gonzáles Merino in a recent paper) by providing a new inequality that tightens Bohnenblust's bound. This union is equal to the union over all diagrams with respect to intersections of triangles with their origin reflection. This is joint work with René Brandenberg and Bernardo Gonzáles Merino.
Source

03.06.2024 14:15 Lorenzo Schönleber (Collegio Carlo Alberto in Turin): Implied Impermanent Loss: A Cross-Sectional Analysis of Decentralized Liquidity Pools

We propose a continuous-time stochastic model to analyze the dynamics of impermanent loss in liquidity pools in decentralized finance (DeFi) protocols. We replicate the impermanent loss using option portfolios for the individual tokens. We estimate the risk-neutral joint distribution of the tokens by minimizing the Hansen–Jagannathan bound, which we then use for the valuation of options on relative prices and for the calculation of implied correlations. In our analyses, we investigate implied volatilities and implied correlations as possible drivers of the impermanent loss and show that they explain the cross-sectional returns of liquidity pools. We test our hypothesis on options data from a major centralized derivative exchange.
Source

03.06.2024 15:00 Maximilian Würschmidt (Universität Trier): A Probabilistic Approach to Shape Derivatives

In this talk, we introduce a novel mesh-free and direct method for computing the shape derivative in PDE-constrained shape optimization problems. Our approach is based on a probabilistic representation of the shape derivative and is applicable for second-order semilinear elliptic PDEs with Dirichlet boundary conditions and a general class of target functions. The probabilistic representation derives from a boundary sensitivity result for diffusion processes due to Costantini, Gobet and El Karoui. Via so-called Taylor tests we verify the numerical accuracy of our methodology.
Source