Stochastic Analysis Exercise Sheet 1

November 3/November 10, 2011

2 Stopping times and the optional stopping theorem

For a random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, $a \in \mathbb{R}$ and $b \in \mathbb{R}$ we have

$$aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2).$$

Remark

Here we allow the degenerate case of a constant and we say $c \sim \mathcal{N}(c, 0)$ for every $c \in \mathbb{R}$.

For two independent random variables $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \mathcal{N}(\nu, \rho^2)$ we have

$$X + Y \sim \mathcal{N}(\mu + \nu, \sigma^2 + \nu^2).$$

Fact 3:

Definition

A random vector $\vec{X} := (X_1, X_2, \dots, X_n)^{tr}$ has a (multivariate) normal distribution iff

$$\langle (X_1, X_2, \ldots, X_n), (a_1, a_2, \ldots, a_n) \rangle = \sum_{i=1}^n a_i X_i$$

has a one-dimensional normal distribution for all $a_1, a_2, \ldots, a_n \in \mathbb{R}$. We write $\vec{X} \sim \mathcal{N}(\vec{\mu}, \Sigma)$ where

$$\vec{\mu} := (\mathsf{E}[X_1], \mathsf{E}[X_2], \dots, \mathsf{E}[X_n])^{tr}$$

is the mean vector of \vec{X} and

$$\Sigma := \begin{pmatrix} \mathsf{Cov}(X_1, X_1) & \mathsf{Cov}(X_1, X_2) & \dots & \mathsf{Cov}(X_1, X_n) \\ \mathsf{Cov}(X_2, X_1) & \mathsf{Cov}(X_2, X_2) & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \mathsf{Cov}(X_n, X_1) & \dots & \dots & \mathsf{Cov}(X_n, X_n) \end{pmatrix}$$

Remark:

The characteristic function can also be defined for a vector $\vec{X} := (X_1, X_2, \dots, X_n)^{tr}$ of random variables and is given by

$$\varphi_{\vec{X}} : \mathbb{R}^n \to \mathbb{C}$$

$$\vec{t} = (t_1, t_2, \dots, t_n)^{tr} \mapsto \mathsf{E}\bigg[\exp\left(i\left\langle \vec{t}, \vec{X} \right\rangle\right)\bigg] = \mathsf{E}\bigg[\exp\left(i\sum_{j=1}^n t_j X_j\right)\bigg].$$

One can show that the characteristic function of a random vector $\vec{X} := (X_1, X_2, \dots, X_n)^{tr}$ with a $\mathcal{N}(\vec{\mu}, \Sigma)$ distribution is given by

$$\varphi_{\vec{X}}(\vec{t}) = \exp(i \cdot \vec{t}^{tr} \cdot \vec{\mu} - \frac{1}{2}\vec{t}^{tr} \cdot \Sigma \cdot \vec{t}).$$

Since the distribution of every random vector is uniquely determined by its charateristic function it turns that the normal distribution $\mathcal{N}(\vec{\mu}, \Sigma)$ is completely charaterized by $\vec{\mu}$ and Σ .

Consider a random vector

$$\vec{\mathsf{K}} := \begin{pmatrix} \mathsf{X}_1 \\ \mathsf{X}_2 \\ \vdots \\ \mathsf{X}_n \end{pmatrix}$$

with a $\mathcal{N}(\vec{\mu}, \Sigma)$ distribution, some matrix $A \in \mathbb{R}^{k \times n}$ and some vector $\vec{b} \in \mathbb{R}^k$. Then

$$A\vec{X} + \vec{b}$$

has a $\mathcal{N}(A\vec{\mu} + \vec{b}, A\Sigma A^{tr})$ -distribution.

Proof: We will show this Theorem in Exercise 2.1!

Consider a random vector $\vec{X} := (X_1, X_2, \dots, X_n)^{tr}$ where $\vec{X} \sim \mathcal{N}(\vec{\mu}, \Sigma)$. If Σ is not singular, i.e. $det(\Sigma) > 0$ then the inverse Σ^{-1} exists and \vec{X} has the density

$$f_{\vec{X}}(\vec{x}) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \cdot \frac{1}{\sqrt{\det(\Sigma)}} \cdot \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^{tr} \cdot \Sigma^{-1} \cdot (\vec{x} - \vec{\mu})\right)$$

with respect to the n-dimensional Lebesgue-measure.

The components of a vector \vec{X} with a normal distribution are independent iff they are uncorrelated.

Corollary

The components of a vector \vec{X} with a normal distribution are independent iff they are pairwise independent.

Proof:

10/16

We only have to show that uncorrelatedness implies independence: By assumption we have $Cov(X_i, X_j) = 0$ for $i \neq j$. Therefore the covariance matrix is diagonal with entries $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$ which denote the variance of X_1, X_2, \ldots, X_n . If one the variances is 0 then that component is degenerate (i.e. constant with probability 1) and hence it is independent of all other components. We can therefore assume w.l.o.g. that we have $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2 > 0$ which implies that the inverse Σ^{-1} exists and is also diagonal with entries $1/\sigma_1^2, 1/\sigma_2^2, \ldots, 1/\sigma_n^2$. Therefore the density function of \vec{X} simplifies into

$$f_{\vec{X}}(\vec{x}) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \cdot \frac{1}{\sqrt{\det(\Sigma)}} \cdot \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^{tr} \cdot \Sigma^{-1} \cdot (\vec{x} - \vec{\mu})\right)$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma_i} \cdot \exp\left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

which shows that the joint density factorizes and therefore we can conclude the independence of the components.

2 Stopping times and the optional stopping theorem

Definition (Stopping time - cf. Definition 14.7)

Let (Ω, \mathcal{A}) be a measurable space and $(\mathcal{A}_n)_{n \in \mathbb{N}_0}$ a filtration of (Ω, \mathcal{A}) . A stopping time is a function

$$\mathcal{T}:\Omega
ightarrow \{0,1,2,\ldots\}\cup\{\infty\}$$

such that

$$\{T=n\}\in\mathcal{A}_n$$

for all $n \in \mathbb{N}_0$.

Theorem (The optional stopping theorem - cf. Theorem 14.9)

Let $(\Omega, \mathcal{A}, \mathsf{P})$ be a probability space and $(\mathcal{A}_n)_{n \in \mathbb{N}_0}$ a filtration of (Ω, \mathcal{A}) :

If (M_n)_{n∈N₀} is a martingale with respect to (A_n)_{n∈N₀} and T a stopping time, then the stopped martingale

 $(M_{T \wedge n})_{n \in \mathbb{N}_0}$

is again a martingale with respect to $(\mathcal{A}_n)_{n\in\mathbb{N}_0}$.

② If in addition $P(T < \infty) = 1$ and $(M_{T \land n})_{n \in \mathbb{N}_0}$ is uniformly integrable, then

 $\mathsf{E}[M_{\mathcal{T}}]=\mathsf{E}[M_0].$

1 Facts about the normal distribution

2 Stopping times and the optional stopping theorem

Let *I* be some index set and $(X_i)_{i \in I}$ a family of random variables. Each of the following conditions is sufficient for the uniform integrability of $(X_i)_{i \in I}$:

- **1** The index set *I* is finite and we have $X_i \in \mathcal{L}^1 \ \forall i \in I$.
- ② There exists a uniform integrable family of random variables (Y_i)_{i∈I} such that |X_i| ≤ |Y_i| ∀i ∈ I.
- So For some p > 1 we have $X_i \in \mathcal{L}^p \ \forall i \in I$.

Allan Gut.

An Intermediate Course in Probability. Springer, 1995. (Chapter 5: The Multivariate Normal Distribution)

Achim Klenke.

Probability Theory. Springer, 2008. (Chapter 6: Convergence Theorems (includes a lot of information about uniform integrability))