Chapter 2
Selection of Vine Copulas

Claudia Czado, Eike Christian Brechmann and Lutz Gruber

Abstract Vine copula models have proven themselves as a very flexiags of
multivariate copula models with regard to symmetry anddejpendence for pairs
of variables. The full specification of a vine model requittess choice of vine tree
structure, copula families for each pair copula term anit twresponding param-
eters. In this survey we discuss the different approaclutk,fbequentist as well as
Bayesian, for these model choices so far and point to opédriqrs.

2.1 Introduction

The analysis of high dimensional data sets requires flexitl&ivariate stochastic
models which can capture the inherent dependency patfEnescopula approach,
which separates the modeling of the marginal distributfomsn modeling the de-
pendence characteristics, is a natural one to follow indbigext. This development
has spawned a tremendous increase of copula-based ajppkadatthe last 10 years,
especially in the area of finance, economics and hydrology.

Considerable efforts have been undertaken to increasetikifity of multivari-
ate copula models beyond the scope of elliptical and Arctieae copulas. Vine
copulas are among the best-received of such efforts. Vipalae use (conditional)
bivariate copulas as the so-called “pair copula” buildihgcks to describe a mul-
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tivariate distribution (see [36]). A set of linked trees-etlvine’—describes a vine
copula’s factorization of the multivariate copula dendiipction into the density
functions of its pair copulas (see [8, 9]). The article by i[lljstrates a first appli-
cation of the vine copula concept using non-Gaussian painles to financial data.
The first comprehensive account of vine copulas is found4, @ recent survey in
[20], and the current developments of this active reseamreh ia [45] .

Elliptical copulas as well as Archimedean copulas have Iskewn to be inad-
equate models to describe the dependence characteristeal @ata applications
(see for example [1, 24, 23]). As a pair copula constructiame copulas allow dif-
ferent structural behaviors of pairs of variables to be ntedisuitably, in particular
so with regard to their symmetry, or lack thereof, strendtdependence, and tail
dependencies. Such flexibility requires well-designed@heelection procedures to
realize the full potential of vine copulas as dependenceatso®uccessful applica-
tions of vines can be found, amongst others, in[10, 12, 1,22231, 47, 50, 53, 60].

A parametric vine copula consists of three components:af ieked trees iden-
tifying the pairs of variables and their conditioning vélies, the copula families for
each pair copula term given by the tree structure, and thregponding copula pa-
rameters. The three-layered definition leads to three funeddal estimation and
selection tasks: 1. Estimation of copula parameters forose vine tree structure
and pair copula families, 2. Selection of the parametriaxafamily for each pair
copula term and estimation of the corresponding paramfieeschosen vine tree
structure, and 3. Selection and estimation of all three immlaponents. In this sur-
vey we address these tasks and give an overview of the Ealtispproaches taken
so far. These range from frequentist to Bayesian methods.

The remainder of this paper is structured as follows. IniSe@.2 we provide
the necessary methodical background on regular vines guithrevine copulas. We
then discuss estimation of parameters of regular vine @spinl Section 2.3 and
the selection of appropriate pair copulas in Section 2.4tiG@® 2.5 treats the joint
selection of the regular vine tree structure, the copulalfasnand their parameters.
Section 2.6 concludes with a discussion of available sathvaad open problems.

2.2 Regular Vine Copulas

Copulas describe a statistical model's dependence behsgarately from its
marginal distributions [59]. As such, a copula is a multigte distribution func-
tion with all marginal distributions being uniform: i.e gltopula associated with an
n-variate cumulative distribution functidf ., with univariate marginal distribution
functionsFy, ..., F, is a distribution functior€ : [0,1]" — [0, 1] satisfying

Fin(X) =C(F1(X1),...,Fn(Xn)), X=(X1,...,Xn) € R".

If C is absolutely continuous, its density is denoteathy
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The factorization of multivariate copula densities intor{ditional) bivariate cop-
ula densities is due to [36] and [8]. The details of theseoférations are represented
by the graph theoretical construction called regular vimerganize different de-
compositions. Graphs are defined in terms of a set of nhidasd a set of edgds
connecting these nodes, iEeC N x N. Vines are based on trees which are particular
graphs where there is a unique sequence of edges betweetveanbdes.

Definition 2.1 (Regular Vine Tree Sequence)A set of linked treed” = (T1, T, ...,
Th_1) is a regular vine (R-vine) on elements if

1. Ty is a tree with nodeBl; = {1,...,n} and a set of edges denotedbBy.

2. Fori=2,...,n—1,T; is a tree with nodell; = E;_; and edge sef;.

3. Fori=2,...n—1,ifa={a;,a} andb= {by,b,} are two nodes if\; connected
by an edge, then exactly one of theesquals one of thi; (proximity condition).

In other words, the proximity condition requires that thgeslcorresponding to
two connected nodes in tr@eshare a common node in tré&e 1. This ensures that
the decomposition into bivariate copulas which is giverobek well-defined.

Two sub-classes of regular vines have been studied exengivthe literature:
canonical vines (C-vines) and drawable vines (D-vines} (dd, 1]). C-vines are
characterized by a root node in each tigei € {1,...,n— 1}, which has degree
n—i, in other words the root node is connected to all other nodi¢iseotree. D-
vines, on the other hand, are uniquely characterized ttrthajr first tree which is,
in graph theoretical terms, a path; this means that each masldegree of at most
2. Therefore the order of variables in the first tree definectimplete D-vine tree
sequence.

Some more definitions are needed to introduce regular vipelase: the complete
unionA. of an edgee = {a,b} € E; in treeT, of a regular vine/” is defined by

Ace={veN;: dJen€En, m=1,...;i—1 suchthavce c---cg_1<ce}.
(2.1)

The conditioning set associated witk= {a,b} is defined a®e := AN A, and the
conditioned sets associated with- {a, b} are defined a8 4 := Aa\ De and%ep :=
Ay \ De. [8] showed that the conditioned sets are singletons, andiléherefore
refer to edges by their labelgéea, Gepn|De} = {i(€),j(e)|D(e)}. An exemplary
regular vine on five elements is shown in Figure 2.1.

Given these sets, we can specify a regular vine copula byiasisy a (condi-
tional) bivariate copula to each edge of the regular vin@-easled pair copula.

Definition 2.2 (Regular Vine Copula).A regular vine copula C= (¥, %2 (V),
6(#(7))) in ndimensions is a multivariate distribution function suchttfor a
random vectolJ = (Uy, ... ,Un)" ~ C with uniform margins

1. 7 is aregular vine om elements,

2. B8(7) = {Cie)j(e)p(e)|€ € Em, m=1,...n—1} is a set ofn(n—1)/2 copula
families identifying the conditional distributions ¢, Uj e [Up(e),

3.0(A(7)) = {6i(e).j@ep(e) /€€ Em m=1,...n—1} is the set of parameter vec-
tors, corresponding to the copulas# (7).
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Fig. 2.1 Regular vine on five elements.

Therefore the full specification of a regular vine copulagists of three lay-
ers: the regular vine tree structurg the pair copula families# = #(¥") and the
pair copula parametes= 6(%(7)). Regular vine copulas which differ in the tree
structure or in at least one pair copula family representinegal different statisti-
cal models. Notable exceptions from this are the multitar@aussian, Student’s t
or Clayton copulas, which can be decomposed into bivariates§an, Student’s t
or Clayton copulas, respectively, in multiple ways (sed)[6Bhe probability den-
sity function f1,, at pointx = (xq,...,%,)" € R" of an n-dimensional regular vine
dependent distributioR; -, is easily calculated as

n-1
fin (X7, %,0) = (I_I I_l Ci(e).i(e)D(e) (F|(e)D(e)aFj(e)D(e)|6i(e),j(e)D(e))>
m=le={ab}cEm
x f1(Xa) - (%), (2.2)

whereRe) p(e) = Fi(e)p(e) (%i(e)Xp(e)) aNdFj(e)pie) = Fi(e)p(e) (Xj(e)Xo(e)) (S€€
[8]). These conditional distribution functions can be det@ed recursively tree-by-
tree using the following relationship

FieIne) (Xi(e)[Xn(e)) = FealDe (XzealXDe)

0Cy, a) anylDa (F%a.alwoa (Xaay XDa) s Fta D0 (Xt |XDa)) (2.3)

)

OF g, o |Da (X, |XDa)

wheree= {a,b} with a= {a;,a,} as before (see [23] for details).
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To facilitate inference, it is assumed that the pair cop@las j(e)pe) only de-
pend on the variables with indices M(e) through the arguments ¢ pe and
FieD(e)- Th_|s so-called simplifying assumption has been !nvea@dby [34] and
[63]. In particular, [34] show examples where the assunmasaot severe and [63]
show that the multivariate Clayton copula is the only Arca@dean copula which
can be represented as a simplified vine. A critical look orstiigect can be found
in [2] who take a first step in building vine copulas of non-glified structure.

Following Expression (2.2), the likelihood of a regular vine copul& =
(7,2,0) given the observed data= (x1,...,xn)’ € RN*" can be calculated as

N
L(A//V%vep() = rllflln (Xk|7/7<%76)' (24)
k=

The corresponding log-likelihood is denoted by

A regular vine copula is said to irincated at level Mf all pair copulas condi-
tioning onM or more variables are set to bivariate independence cofiidasAs a
result, the iteration indem of the first product in Equation (2.2) runs only upne=
M and the distribution is fully specified by = (T1,...,Tm), B(¥),0(B(7))).

In the following, we now discuss in reverse order how the congmts of a reg-
ular vine copula can be selected and estimated. That is, gie kéth estimation
of the parameter@, then treat the selection of appropriate copula familgsand
finally discuss the selection of vine tre¥s

2.3 Parameter Estimation for Given Vine Tree Structure and
Pair Copula Families

Given a vine tree structur& and pair copula families# = #(7'), the challenge is
to estimate the parameteis= 6(#(7')) of a regular vine copula for observed data
x € RN The crucial point of this task are the conditional disttibn functions
Fi(e)|p(e)» Which depend on copulas of previous trees (see (2.3)).

2.3.1 Maximum Likelihood Estimation

Classically, parameters of a statistical model are oftéimesed using maximum
likelihood techniques. Here, this means that regular vimguta parameter8 and
parameters of the marginal distributions are estimatedédximizing the likelihood
(2.4) in terms of these parameters. For copulas, in paatidtih > 2, the number
of parameters to be estimated may however be too large, soreaypically ei-
ther uses empirical distribution functions for the margissproposed by [25, 26]
or estimates parameters of the marginal distributions imsa step and then fixes
these marginal parameters to their estimated values instiraation of the copula
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parameters. The latter method is called inference funstion margins (IFM) by
[38, 37].

But even when estimation of marginal and dependence pagasristseparated,
joint maximum likelihood estimation of regular vine copplarameters can be very
challenging, since the vine decomposition involvés — 1)/2 bivariate copulas
with corresponding parameters. [1] therefore proposedaesgial method: starting
with the copulas of the first tree, this method proceedswise-and estimates the
parameters of the copulas in a tree by fixing the parametemiias in all previous
trees.

Example 2.1 (Sequential Estimatioh}t the 5-dimensional regular virng of Fig-

ure 2.1 be given with copula®(¥’). In the first step, we estimate the parameters of
the copula; 2, C; 3, C34 andCz 5 using maximum likelihood based on the trans-
formed observations;j(xc;) for xj, k=1,...,N, j=1,...,5. Inthe second tree, we
then have to estimate for instance the parameter(s) of thel@G, 3,. For this we
form pseudo-observatiofs, (X [k, 91’2) andF3)2(Xa| X2, 92’3), k=1,...,N, ac-
cording to Expression (2.3) and using the estimated paemet copulag; » and
Cz.3, respectively. Based on these pseudo-observations ¢istmud 6, 3, is again
straightforward. Similarly for all other copulas.

Note that this strategy only involves estimation of bivegieopulas and therefore
is computationally much simpler than joint maximum lika@dd estimation of all
parameters at once. For more details see [1] as well as [38]imiestigates the
asymptotic properties of this sequential approach. A caispa study of estimators
for regular vine copulas can be found in [33].

If joint maximum likelihood estimates are desired, the sadial method can be
used to obtain starting values for the numerical optimizatA detailed discussion
how to compute score functions and the observed informatiatrix for regular
vine copulas is provided by [64].

2.3.2 Bayesian Posterior Estimation

Bayesian statistics considers parameées random variables. As such, inference
focuses on estimating the entire distribution of the patansénstead of only finding

a point estimate. In particular, the so-called posteristrifiution p(6) := p(8|x),
the distribution of the parameteésgiven the observed datq is the main object
of interest. The unnormalized posterior density factairgo the product of the
likelihood functionL(6|x) (2.4) and the prior density functiam(6):

L(6|x)-1(6)
)

The prior distribution incorporates a priori beliefs abthg distribution of the pa-
rameters. It must not depend on, or be conditional upon, liserved data.

p(6) := p(BJx) = aL(61%)- 7(6).
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Markov chain Monte Carlo (MCMC) procedures clear the renmgjimbstacle of
sampling from a distribution which is known only up to a camdt The trick is to
simulate the run of a Markov chain whose equilibrium disttibn is the targeted
posterior distributiorp(6) of the parameter. Upon convergence of the Markov
chain, its states represent draws from the desired disitriou

The Metropolis—Hastings algorithm [48, 30] implements siraulation of such
a Markov chain through an acceptance/rejection mecharositné updates of the
chain: in a first step, an update of the chain from its currate® to 6* ~ q(-|9)
is proposed. The proposal distributiqwan be chosen almost arbitrarily. In the sec-
ond step, the proposal is accepted with probabidity= a(6,6*). The acceptance
probability a is chosen such that convergence of the Markov chain to tigyeted
distribution is guaranteed by Markov chain theory [49]. Metropolis—Hastings
acceptance probability for convergence to the targetibigton p(-) is

. _ P(B") q(8]6")
a(6.69="2) @)

The target distribution goes into the Metropolis—Hastialgerithm only at the eval-
uation of the acceptance probability It can be easily seen that it is sufficient to
know the density function of the target distribution only tgpa constant for this
algorithm to work, given thatr only depends on the ratio of two densities.

The following Metropolis—Hastings scheme to sample frompbsterior distri-
bution of the paramete&of a regular vine copula is proposed in [61] and [28]. The
authors suggest normally distributed random walk proposalused in the update
step.

Algorithm 2.1 (Metropolis—Hastings Sampler for ParameterEstimation)
1: Choose arbitrary starting value8® = (6?,...,63)’, where D:=n(n—1)/2.
2: for eachiterationr=1,...,Rdo
3 Setf" =0""1
4. fori=1,...Ddo
5 Draw 6 from a N(Gir’l, o) distribution with probability density function

(p(eir—l"oiz)(.).
6: Evaluate the Metropolis—Hastings acceptance probabilftihe proposal
N Qgr 52 (e_rfl) * %
a—a(gt gy PO Aqe® T LEX) b

p(0) Ggigp (@) LX) 7(0)

where6* = (6},....6", 6/ ....,60 )

and6 = (6],...,68" ;81 ....651y.
7: Accept the proposd with probabilitya; if rejected, se = 6" 2.
8: endfor
9: end for

10: return (6%,...,6R%)
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2.4 Selection of the Pair Copula Families and their Paramets
for a Known Vine Tree Structure

An n-dimensional regular vine copula with tree structifés based on a seB(¥)
of n(n—1)/2 bivariate copulas and their corresponding parameteesc@pula fam-
ilies can be chosen arbitrarily, e.g., from the popularsgaf Archimedean, ellip-
tical or extreme-value copulas. Assuming that an apprtgsiae structure/” is
chosen, the question therefore is how to select adequatdi{mmal) pair copulas
Ci(e),j(e)ID(e) @Nd their parameters for given data

2.4.1 Sequential Selection

If a regular vine is truncated at level 1—that is the coputaséesT, to T, 1 are
set to independence—, the corresponding regular vine agpduces to the prod-
uct of unconditional bivariate copul&e je Which can be selected based on data
Fie) (Xci(e)) @andFj(e) (X j(e))s K=1,...,N. Typical criteria for copula selection from
a given set of families are information criteria such as tH€ As proposed by
[46] and [11]. The latter compares AlC-based selection tedtalternative selec-
tion strategies: selection of family with highgstvalue of a copula goodness of fit
test based on the Cramér-von Mises statistic, with snallistance between em-
pirical and modeled dependence characteristics (Kesdaltail dependence), or
with highest number of wins in pairwise comparisons of fasilusing the test by
[65]. In a large-scale Monte Carlo study the AIC turned oubécthe most reliable
selection criterion.

In a general regular vine, the selection of a pair coflilg je)pe however
depends on the choices for copulas in previous trees duedmgitiments (2.3). Since
a joint selection seems infeasible because of the manylplitsss, one typically
proceeds tree by tree as in the sequential estimation meiiiwd is, instead of
estimating the parameteéq) je)p(e) Of Ci(e).j(e)D(e)» the copula is selected first
and then estimated, which usually coincides for most selestrategies. Given the
selected and estimated copulas of previous trees, onedleristhe copulas of the
next tree.

Example 2.2 (Sequential Selectiomgain consider the five-dimensional regular
vine 7 of Figure 2.1 but now with unknown copulag(?’). In the first tree, we
select (and then estimate) the copulag, C 3, C34 andCs s using our method

of choice based offrj(xj), k=1,..,N, j =1,...,5. Given these copulas, we
then have to select conditional copulas in the second treease of the cop-
ulaC;y 35, we therefore again form the pseudo-observat®ngx %, 612) and

Faj2 (X /%2, éz,s), k=1,...,N, according to Expression (2.3) and then select (and
estimate)C; 3, based on them. This can be iterated for all trees.

Clearly this sequential selection strategy accumulatesitainty in the selection
and therefore the final model has to be carefully checked amgared to alternative
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models. For the latter, the tests for non-nested model casguaby [65] and [18]
may be used.

2.4.2 Reversible Jump MCMC-Based Bayesian Selection

Bayesian copula family and parameter selection aims anastig the joint pos-
terior distribution of the pair copula familie® = #(¥') and parameter§ =

8(%A(7)). The posterior density function factorizes into the prddofcthe like-

lihood functionL (2.4) and the prior density functior: p(#,6) O L(%,6|x) -

1(4,0).

As in Section 2.4.1, family selection is understood in thatest of choosing
from a pre-specified s& of parametric pair copula families. Model sparsity can be
induced through the choice of prior distributions whichdavegular vine copulas
with fewer parameters over those with more parameters.

Bayesian techniques to select the pair copula families wirl@-copulas are cov-
ered in [50], [51] and [60]. The reversible jump MCMC algbrit presented in this
section follows the latest developments of family selettitethods for regular vine
copulas laid out in [28].

Reversible jump Markov chain Monte Carlo is an extensionrdfrary MCMC
to sample from discrete-continuous posterior distrimgiorhe sampling algorithm
and the mathematics underpinning the convergence stateraem an immedi-
ate generalization of the Metropolis—Hastings algoritt2i#]][ A reversible jump
MCMC algorithm functions like an ordinary MCMC algorithmtivione extra step
built in: before, or after, updating the parameters, a “jingpanother model is
attempted. That is called the “between-models move,” wihike updating of the
parameters only is called the “within-model move” [16].

Algorithm 2.2 implements a reversible jump MCMC sampler ethsamples
from the joint posterior distribution of the pair copula fdies % and the param-
eters@, given a regular vine tree structu¥é. In each iteration, it first updates all
parameters as in Algorithm 2.1. Then the pair copula fasiiee updated along
with their parameters one-by-one. The pair copula famigppsals are drawn from
a uniform distribution oveB, while the parameter proposals are sampled from a
(multivariate) normal distribution centered at the maximiikelihood estimates of
the parameters.

Algorithm 2.2 (Reversible Jump MCMC Sampler for Family Selection)
1: Choose arbitrary copula family and parameter starting \ed%°,0°) =
(£2,69),...,(#3.,6%)), where D:=n(n—1)/2.
2: for eachiterationr=1,...,Rdo
3 Set(#,0") = (#1071,
4.  Perform one update step of Algorithm 2.1 for the parame#rslenote the
updated parameter entries I8 .
5. fori=1,...,.Ddo
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6: Draw 4 from a Unif(B) distribution.
Draw 6! from a multivariate N&;, 5") distribution with probability den-
sity functionqo(éir,iir) (). Here éir denotes the MLE of the copula parameters
of the pair copulaz andfir denotes the estimated approximative covari-
ance matrix of the parameter estima@s

8: Evaluate the generalized Metropolis—Hastings acceptgmobability of
the proposal
a:=a((# .6/),(#.6

)
p#,6r) Yerisn!
T R(#.0)  9qs 0

)
6")
)

.60 Lotk Retsy O
n—(%ve) (‘9379|X (pg z' (er) ’

where " = (%‘1, LB BB,
B=(PB,....B_ l,%r L BLt),6°=(6Y,...,60,6/ ,,....60),and
6 (6!’1’ 76{ 176|+7 6+)

9 Acceptthe propos&is; 6’)W|th probabilitya; if rejected, se{ %/, 6" ) =

(%" 6*).
10:  endfor
11: end for

12: return ((#L,0%),..., (%8R, 0R)

2.5 Selection of Vine Tree Structure, Pair Copula Families ad
Parameters

As pair copula familiesZ = #(¥') and parameter8 = 6(%(¥')) both depend
on the vine tree structur¢’, the identification of adequate trees is crucial to the
model building process using vine copulas. As it was alréheyase for pair copula
selection in Section 2.4.1, it is again not feasible to syrip} and fit all possible
regular vine copula€ = (7,4, ) and then choose the ‘best’ one. In particular, the

number of possible regular vines nvariables ié%’ X 2(n52) as shown by [52]. This
means that even if pair copulas and parameters were knognutihber of different
models would still be enormous.

This remains true even when the selection is restricteddcstii-classes of C-
and D-vines, since there are still/2 different C- and D-vines im dimensions,
respectively (see [1]). It should however be noted that @ Rrvine copulas are
most appropriate if their structure is explicitly motivdtey the data. In particular,
C-vine copulas may be used if there is a set of pivotal vaggblich as stock indices
(see [31, 12]) and D-vine copulas are particularly attvactd model variables with
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temporal order (see [60, 13]). Nevertheless we describeGiaand D-vines can be
selected for arbitrary data sets.

2.5.1 Top-Down and Bottom-Up Selection

Due to the proximity condition (see Definition 2.2) regulames/trees are closely
linked to each other and have to be constructed carefully.comstruction strategies
have been proposed in the literature: a top-down approa¢?3dywand a bottom-up
method by [42]. Both strategies proceed sequentially tsetrd®e and respect the
proximity condition in each step. We first describe the taopvd, then the bottom-
up method.

2.5.1.1 Top-Down Selection

Selecting regular vine trees top-down means that one stéttshe selection of the
first treeT; and continues tree by tree up to the last ffge. The first treel; can
be selected as an arbitrary spanning tree. Given that dgrem € {1,...,n— 2},
has been selected, the next tige ; is chosen respecting the proximity condition
(see Definition 2.2). In other word%;,, 1 can only be formed by (conditional) pairs
{i(e), j(e)|D(e)} which fulfill the proximity condition.

Example 2.3 (Top-Down Tree Selectioh$sume that we have selected the first tree
Ty as shown in Figure 2.1. Then the question is which pfiifs), j(e)|D(e)} are
eligible for tree construction in the second tiee According to the proximity con-
dition these ar€/1,3|2}, {2,4|3}, {2,5/3} and {4,5|3}. Obviously, the last three
pairs form a cycle and therefore only two of them can be setefdr T,. One of the
three possibilities is shown in Figure 2.1.

To perform this iterative selection strategy a criterionégded to select a span-
ning tree among the set of eligible edges, where a spanreegstmply denotes a
tree on all nodes. Clearly, the log-likelihodgl of the pair copulas in tre@,, of a
regular vine copula (see Expression (2.4)) is given by

N
U (T, B, 07 %) = 5 5 109 (Gige,j(e)pie) (Fice)nie): Ficepie) [Bice).ice)nee)) -

k=1eckm
(2.5)
where we write#r,, := ZA(Tm) andOr,, := 8(B(Tm)).

A straightforward solution therefore would be to choosettke such that (2.5)
is maximized after having selected pair copulas with higitlikelihood for each
(conditional) pair{i(e), j(e)|D(e)} which fulfills the proximity condition. This so-
lution however leads to highly over-parameterized modsfe,e models with more
parameters in which simpler models are nested will always gihigher likelihood.
For instance, the Student’s t copula always has a highdildad value than the
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Gaussian copula which is a special case of the Student'heategrees of freedom
go to infinity.

Therefore we formulate the following algorithm in terms ofaneral weight
w assuming that we want to maximize it for each tree. The ptshodiscussed
strategy corresponds to choosing the pair copula logiikeds as weights.

Algorithm 2.3 (Sequential Top-Down Selection Based on \Welds)

1: Calculate the weighty j for all possible variable pairgi, j},1 <i<j <n.
2: Select the maximum spanning tree, i.e.

T.=_ argmax 2. “eiter
T=(N,E) spanning tree ec

3: for each edge € E; do
4:  Selectacopulafe je
5.  Estimate the correspondmg parameter@g)e (e)-

6. Fork=1,. Ntransform Feylice) Xki(e) Xk j(e) 6 (e)) and
Fielie)(%.j(e) Xkie): Oice).ie )usmg(z 3)

7: end for

8: foom=2,...,n—1do

9: Calculate the weighty e je)p(e) for all conditional variable pairs

{i(e), j(e)|D(e)} that can be part of tree], i.e., all edges E fulfilling the
proximity condition.
10.  Among these edges, select the maximum spanning tree, i.e.,

Tn= argmax EE @(e).je)D(e)
T=(N,E) spanning tree with EEp

11:. for each edge € E, do

12: Select a conditional copula(g),j(e)p(e)-
13: Estimate the corresponding parameter@ﬁ)3 i(e)D(e)-
14 For k=1,...,N transform Fe)je)up(e) (X, |ka sXk.D(e)s Bi(e).j(e)D(e))

and Fg)jie)un(e) Xk, j(e) | Xkii(e)s Xk D(e) 9 ),i(e)D(e) )usmg(23)
15:  endfor

16: end for o
17: return the sequential model estimat¢’, %, 0).

Clearly, this algorithm only makes a locally optimal seiewtin each step, since
the impact on previous and subsequent trees is ignored titegy is however rea-
sonable in light of the definition of regular vines (see Dditomi 2.2). The maximum
spanning tree in lines 2 and 10 can be found, e.qg., using #ssichl algorithms by
Prim or Kruskal (see [19, Section 23.2]). Possible choioestfe weightw are, for
example,

e the absolute empirical Kendallisas proposed by [23] and [22];
e the AIC of each pair copula corresponding to the discussid@eiction 2.4.1;
¢ the (negative) estimated degrees of freedom of Studerdis tppulas (see [47]);
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e thep-value of a copula goodness of fit test and variants as profdosg1].

Some remarks: First, taking the empirical Kendail'sis weight does not require
to select and estimate pair copulas prior to the tree selestep. The other three
weights in fact require this, so that lines 4-5 and 12-13 igokithm 2.3 may be
redundant in this case. Second, the AIC as weight also magsithe AIC of the
complete tree, since the individual AICs can be summed @pthik log-likelihood.
Third, the strategy proposed by [47] concentrates on tgieddence, since the al-
gorithm will select pairs with estimated small degrees eéfiom corresponding to
a stronger deviation from Gaussianity with no tail depemgen

Copula goodness of fit tests based on the Cramér-von Miatstigt are consid-
ered in [21] to take into account the uncertainty of the pajuda fit. Correspond-
ing p-values are calculated using fast bootstrap methods basekeomultiplier
approach developed and implemented in [39, 40, 41].

Finally, we like to note that the empirical Kendallisas weight also approxi-
mately maximizes (2.5), since it can be checked that tylyidag-likelihoods of
bivariate copulas increase with increasing absolute vafilkeendall’s T. It however
does not lead to over-parameterization, since copulatsmbegnd tree selection in
a particular tree are independent. The strategy by [23] Iaietore already been
used successfully in applications with up to 52 variableg (42]).

Recently, [35] proposed the construction of vines with panametric pair cop-
ulas based on empirical copula estimators. For vine treeteh [35] also advocate
the use of empirical dependence measures such as Speapnaimise it does not
require any parametric assumption on the pair copulas.r@gpendence measures
such as Blomqgvist'$ could of course be used instead in the approaches by [23]
and [35].

Especially the strategy based on Kendat'®eads to regular vine copulas with
decreasing dependence in higher order trees. This is ahemis to the vine struc-
ture, since numerical errors may add up and estimates belamn@recise as the
number of conditioning variables increases. It also has le@loited by [14] to
identify appropriate truncation levels of regular vine oltzs.

Algorithm 2.3 can easily be modified to select C- or D-vinestéad of general
regular vines. For C-vines the root node in each tree canlgibgpidentified as the
node with maximal sum of weights to all other nodes (see [d8]}he case of D-
vines only the order of variables in the first tree has to besehoSince D-vine trees
are paths on all nodes, so-called Hamiltonian paths, a maritdamiltonian path
has to be identified. This problem is equivalent to a trageialesman problem as
discussed by [11]. As an NP-hard problem, there is no knoficigrit algorithm to
find a solution.

2.5.1.2 Bottom-up selection

Rather than beginning with the first trde, [42] proposed a bottom-up selec-
tion strategy which starts with trél,_1 and then sequentially selects trélgsfor
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m=n-2,...,1. Similar to top-down selection using Kendalt'sby [23], this ap-
proach is also motivated by choosing a regular vine with wedkpendence in later
trees. Here, dependence is however measured in terms iafl garrelations. More
precisely, each tree is selected such that the sum of abguduitial correlations as
edge weights is minimized. This is feasible, since parttaation estimates for
each combination of variables can be obtained from the diit@ut any parametric
assumptions (see, e.g., [66]).

The bottom-up strategy by [42] thus selects ffge; as the edge corresponding
to the pair of variable with lowest absolute partial cortiela given all other vari-
ables. [42] then provides conditions such that the proyiroindition is satisfied
when a tre€ly,, me {1,...,n— 2}, is selected given tre€k,, 1, ..., Th_1. As before
there may be several choices possible in the set of eligddes

Example 2.4 (Bottom-Up Tree SelectioAssume in Figure 2.1 that we have se-
lectedT, with edgee = {a,b} = {1,5|2,3,4} as shown. TheA, = {1,2,3,4} and
A, ={2,3,4,5} (see (2.1)). Any choice of edges frofg and Ay, in tree T3 leads
to a valid tre€T,. For instance, the edgé€4,2|3,4} and{4,5|2,3} are compatible
with Agq andAy, respectively, and would lead to another vine than the one/shn
Figure 2.1. In fact, it could be constructed as a D-vine witlhen 1,4, 3,2, 5.

Since partial correlations are equal to conditional cetiehs for elliptical dis-
tributions (see [5]), this strategy is particularly appiage if all pair copula families
are elliptical. Contrariwise to the top-down approach désed above which re-
quires the selection and estimation of pair copulas in e&eh this strategy chooses
the vine tree structure without any assumption on the paiulzofamilies. Having
selected the vine tree structure, the selection of pair lespean therefore proceed
as discussed in Section 2.4.1.

2.5.2 Sequential Bayesian Tree Selection

Bayesian approaches to estimating the posterior diskoibwdf the tree structure
of a regular vine copula have only recently been developid.sheer number of
possible regular vine tree structures poses a relevanealgal to computationally
efficient posterior evaluation.

This section presents a reversible jump MCMC-based appioaposed by [28]
to obtain a sequential estimate of the posterior distrdoutif the regular vine tree
structure’’, the pair copula familiess, and the copula parametefis The term
“sequential estimation” is understood analogously to thteom discussed in Section
2.5.1.1 as a tree-by-tree procedure.

As in Section 2.4.2, model priora(¥,%4,68) which favor sparse models can
serve to guard against selecting models with runaway cofitypl®n the other hand,
the use of non-informative flat priors allows for tree-bgemaximum likelihood
estimation of the regular vine tree structufe the pair copula familiesg, and the
copula parametei®. As a result, the posterior mode estimate of this procedilte w
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agree with the model estimate of Algorithm 2.3, if flat priare used. Again, the
pair copula families are chosen from a Bedf parametric pair copula families.

For the sake of notational convenience and enhanced réiagahé procedure is
presented in two algorithms. Algorithm 2.4 gives the gehauitline of the sampling
procedure. Algorithm 2.5 details the reversible jump MCMG@oaithm to sample
from the posterior distribution of tre®@, of the regular vine tree structuré€ =
(Toy .o, Thoa).

Algorithm 2.4 implements the tree-by-tree selection pdare. As such, it calls
Algorithm 2.5 for the actual posterior estimation. Howevecondenses the poste-
rior sample into the posterior mode estimate and organieesibye from selecting
tree Ty, to selecting tre@y,, 1. The posterior mode estlma¢§m,%Tm, GTm) of tree
T is the most frequently sampled combination of tree strgctisrand pair copula
families %r,, parameterized at the mode of the posterior sample of thenedeas
6, of this model.

Algorithm 2.4 (Outline of the Tree-by-Tree Sampling Algorithm)

1: Sample from the posterior distribution of the first tr€®,, %, , 67, ): see Algo-
rithm 2.5. o
Set the tree estima(él,%Tl, O7,) to the posterior mode.
foom=2,...,n—1do
Sample from the posterior distribution of the m-th tr@'ﬁpﬁ B 67,), given
the previous trees’ estimaté$;, %r,,01,),..., (Tm_1, %1, ,, 07, ,): see Al-
gorithm 2.5. o
Set the tree estimatd, %+, 07,,) to the posterior mode.
end for
return the sequential Bayesian model estimate

(V,%,0) = ((Tr,..., Tn1),(Bry, ..., B, 1), (B1,,...,07, ).

oD

Noa

Algorithm 2.5 samples from the posterior dlstr|but|or('dj>; Py, 01,) giventhe
previously selected tree{ﬂh%’TI , GT) =1, 1). The within-model move
of this algorithm to update the pair copula parame&afsllows Algorithm 2.1. In
the between-models move, the proposal trees are sampl@dasisg trees which
satisfy the proximity condition. Practitioners may notattthis functionality is im-
plemented, e.g., in the CH#3oost library [58]. Edge weights can be used to fine-
tune the variance of the proposal distribution: in our impdatation, higher values
for pe (0,1) increase the probability that the proposals for the treesire,T,, are
similar to the current stafB,~* of the sampling chain. As in Algorithm 2.2, the pair
copula family proposals are sampled from a uniform distidsuoverB, and the
parameter proposals are drawn from a (multivariate) nodiséfibution centered at
the maximum likelihood estimates of the parameters.

Algorithm 2.5 (Reversible Jump MCMC Algorithm to Sample (Tm, #r1,,, 61,,))

Denote the pair copula families of treg & (Nm, Em) by %, = (%e, € € Em), and
the corresponding pair copula parameters @y, = (6e,e € En).
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1: Choose arbitrary, but valid, tree structure, copula fanatyd parameter starting
values(Tg, 23 ,69 ). Ifm> 2, observe the proximity conditionimposed ¢h T

2: for each iteration r_ ,Rdo
3 Set(Th, &% 6% )= (Tr L e h.

4:  Perform one update step of Algorithm 2.1 for the pair copudsameters of
tree T, 07 ; denote the updated parameter entriesﬂq*%.

5. Draw a spanning tree [T which satisfies the proximity condition from the
proposal distribution

ATt = (N, B ) — T = (N, Efy)) O plEn7ER (1 — ) Em\ER .

6: for each edge e E/,, do

7 Draw 4 from a Unlf( ) dlstrlbutlon

8: Draw Gr from a multivariate %Ge, Z’ distribution with probability den-
sity functlon(pe 50 (). Here 6, denotes the MLE of the copula param-

eters of the pair copulazy, and Zr denotes the estimated approximative
covariance matrix of the parameter estlma&gs

9. endfor
10:  Set#T = (%, ecE), = (0, ec El).
11:  Evaluate the generallzed Metropohs Hastings acceptamokability of the
proposal

a:=a((TH? (@rTml’(%) (Tm, 25,.,6%.))
_p(r#,6) Mecer* 9t 50y (64)
p(7.%.8) " Mot Q21 (00

o, #,6Y) L2, 0% Mecert o 5501 (06)
n(df/w%ae) L(qf/,(@,6|X) |_|eeEr'n q’(érefé)(ere) ,

where? ™" = (T]_, -fm,j_,Tn';,), V= (j-l, Tm 1,Tr7 )
‘%*7(%1_1’ ‘%Tm—ﬂ‘%!rm)"%:(‘%-rl? %Tm 1a<@ ),
0*=(0r,,...,0r, ,.6% ), andd = (éTl,...,eTmfl,eﬂ)

12:  Accept the proposdlTy, #%. , 6% ) with probability a; if rejected,
Set(T), % 0% ) — (T 4 6% )

13: end for

14: return ((Tq, #%,.67 )., (TR, BR 68 )

2.6 Conclusions and Outlook

We have focused on the various model selection and estimat@hods for regular
vine copulas. Since a regular vine model is specified by thinked components,
this results in three fundamental tasks with increasingplerity. We discussed fre-
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quentist and Bayesian approaches for each of these tagtaticular this involved
sequential approaches starting from the top tree untilakettee. The frequentist
approaches are implemented in the R-pack&®§ ne [15, 56] for D- and C-vines
andVi neCopul a [57] for regular vines, respectively.

In view of the linked nature of the vine tree structure theussdial approach is a
natural approach. However as in the case of covariate ggientlinear models, this
might not yield the best fit to the data. In addition the apphes so far primarily
considered in-sample fit and model comparisons, more etapisiork is needed to
validate the models in an out-of-sample performance stHdyever this is now
feasible and tractable and is the subject of current inyastins.

It has been recently recognized by [2] that even the flexildsscof simplified
regular vines might be insufficient for some data sets. Thightrbe the result that
the underlying joint density is not well approximated by mgiified regular vine
density, where the conditional copula family terms are ehds be independent of
the conditioning value. Currently the proposed solutiof2bfising non-parametric
two-dimensional smoothing methods is limited to three disiens and it will be
a major challenge to extend the model and the selection metfmohigher dimen-
sions.

Other non-standard vine models occur when the pair coputestdepend on the
conditioning time point, thus yielding models with time yaig copula parameters.
These can also be seen as non-simplified vines in the spedaltbat the con-
ditioning variables follow a functional relationship terte. First parameter driven
time dependence was considered using an AR(1) dynamics oghula parameters
in the papers by [3] and [4], while [61] follow a regime swilich approach. Here
only parameter estimation and assessment of the uncgrtditiie parameters are
considered so far. It has to be investigated if the additilexibility of the copula
families and the different vine tree structures is needee.he

This survey primarily focused on the selection and estiomgpiroblem of regular
vines with parametric pair copula families. The approacf86f can be compared
to ones which are based on kernel methods as proposed indTh&h

Other data structures than multivariate continuous date aso gained by mod-
els based on pair copula constructions. In particular netstuctures were consid-
ered by [29] and [43] in a primarily Gaussian set-up and byiri7ld non-Gaussian
setting. Here the network is modeled by a directed acyclaplyr(DAG) model.
While learning the network structure from data is a very ctaxpask even in Gaus-
sian DAG models, non-Gaussian learning algorithms areeatiyr developed and
investigated in [6].

Another very interesting multivariate data structure asemte and mixed dis-
crete-continuous outcomes which occur most often in tieesliiences. Pair copula
constructions using D-vines for discrete outcomes wereniiy developed in [54]
together with highly efficient parameter estimation tecjueis. Current research is
conducted to allow for mixed outcomes [62].

While these extensions are still concerned primarily wihgmeter estimation, it
remains an important open challenge to find non-sequentigisns to the selection
of regular vines when all three components have to be selecte
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