
Chapter 2
Selection of Vine Copulas

Claudia Czado, Eike Christian Brechmann and Lutz Gruber

Abstract Vine copula models have proven themselves as a very flexible class of
multivariate copula models with regard to symmetry and taildependence for pairs
of variables. The full specification of a vine model requiresthe choice of vine tree
structure, copula families for each pair copula term and their corresponding param-
eters. In this survey we discuss the different approaches, both frequentist as well as
Bayesian, for these model choices so far and point to open problems.

2.1 Introduction

The analysis of high dimensional data sets requires flexiblemultivariate stochastic
models which can capture the inherent dependency patterns.The copula approach,
which separates the modeling of the marginal distributionsfrom modeling the de-
pendence characteristics, is a natural one to follow in thiscontext. This development
has spawned a tremendous increase of copula-based applications in the last 10 years,
especially in the area of finance, economics and hydrology.

Considerable efforts have been undertaken to increase the flexibility of multivari-
ate copula models beyond the scope of elliptical and Archimedean copulas. Vine
copulas are among the best-received of such efforts. Vine copulas use (conditional)
bivariate copulas as the so-called “pair copula” building blocks to describe a mul-
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tivariate distribution (see [36]). A set of linked trees—the “vine”—describes a vine
copula’s factorization of the multivariate copula densityfunction into the density
functions of its pair copulas (see [8, 9]). The article by [1]illustrates a first appli-
cation of the vine copula concept using non-Gaussian pair copulas to financial data.
The first comprehensive account of vine copulas is found in [44], a recent survey in
[20], and the current developments of this active research area in [45] .

Elliptical copulas as well as Archimedean copulas have beenshown to be inad-
equate models to describe the dependence characteristics of real data applications
(see for example [1, 24, 23]). As a pair copula construction,vine copulas allow dif-
ferent structural behaviors of pairs of variables to be modeled suitably, in particular
so with regard to their symmetry, or lack thereof, strength of dependence, and tail
dependencies. Such flexibility requires well-designed model selection procedures to
realize the full potential of vine copulas as dependence models. Successful applica-
tions of vines can be found, amongst others, in [10, 12, 17, 22, 24, 31, 47, 50, 53, 60].

A parametric vine copula consists of three components: a setof linked trees iden-
tifying the pairs of variables and their conditioning variables, the copula families for
each pair copula term given by the tree structure, and the corresponding copula pa-
rameters. The three-layered definition leads to three fundamental estimation and
selection tasks: 1. Estimation of copula parameters for a chosen vine tree structure
and pair copula families, 2. Selection of the parametric copula family for each pair
copula term and estimation of the corresponding parametersfor a chosen vine tree
structure, and 3. Selection and estimation of all three model components. In this sur-
vey we address these tasks and give an overview of the statistical approaches taken
so far. These range from frequentist to Bayesian methods.

The remainder of this paper is structured as follows. In Section 2.2 we provide
the necessary methodical background on regular vines and regular vine copulas. We
then discuss estimation of parameters of regular vine copulas in Section 2.3 and
the selection of appropriate pair copulas in Section 2.4. Section 2.5 treats the joint
selection of the regular vine tree structure, the copula families, and their parameters.
Section 2.6 concludes with a discussion of available software and open problems.

2.2 Regular Vine Copulas

Copulas describe a statistical model’s dependence behavior separately from its
marginal distributions [59]. As such, a copula is a multivariate distribution func-
tion with all marginal distributions being uniform: i.e. the copula associated with an
n-variate cumulative distribution functionF1:n with univariate marginal distribution
functionsF1, . . . ,Fn is a distribution functionC : [0,1]n → [0,1] satisfying

F1:n(x) = C(F1 (x1) , . . . ,Fn (xn)) , x = (x1, ...,xn)
′ ∈ R

n.

If C is absolutely continuous, its density is denoted byc.
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The factorization of multivariate copula densities into (conditional) bivariate cop-
ula densities is due to [36] and [8]. The details of these factorizations are represented
by the graph theoretical construction called regular vine to organize different de-
compositions. Graphs are defined in terms of a set of nodesN and a set of edgesE
connecting these nodes, i.e.E ⊂N×N. Vines are based on trees which are particular
graphs where there is a unique sequence of edges between eachtwo nodes.

Definition 2.1 (Regular Vine Tree Sequence).A set of linked treesV = (T1,T2, ...,
Tn−1) is a regular vine (R-vine) onn elements if

1. T1 is a tree with nodesN1 = {1, ...,n} and a set of edges denoted byE1.
2. Fori = 2, ...,n−1,Ti is a tree with nodesNi = Ei−1 and edge setEi .
3. Fori = 2, ...,n−1, if a= {a1,a2} andb= {b1,b2} are two nodes inNi connected

by an edge, then exactly one of theai equals one of thebi (proximity condition).

In other words, the proximity condition requires that the edges corresponding to
two connected nodes in treeTi share a common node in treeTi−1. This ensures that
the decomposition into bivariate copulas which is given below is well-defined.

Two sub-classes of regular vines have been studied extensively in the literature:
canonical vines (C-vines) and drawable vines (D-vines) (see [44, 1]). C-vines are
characterized by a root node in each treeTi , i ∈ {1, ...,n− 1}, which has degree
n− i, in other words the root node is connected to all other nodes of the tree. D-
vines, on the other hand, are uniquely characterized through their first tree which is,
in graph theoretical terms, a path; this means that each nodehas degree of at most
2. Therefore the order of variables in the first tree defines the complete D-vine tree
sequence.

Some more definitions are needed to introduce regular vine copulas: the complete
unionAe of an edgee= {a,b} ∈ Ei in treeTi of a regular vineV is defined by

Ae = {v∈ N1 : ∃em ∈ Em, m= 1, . . . , i −1, such thatv∈ e1 ∈ ·· · ∈ ei−1 ∈ e} .
(2.1)

The conditioning set associated withe= {a,b} is defined asDe := Aa∩Ab and the
conditioned sets associated withe= {a,b} are defined asCe,a := Aa\De andCe,b :=
Ab \De. [8] showed that the conditioned sets are singletons, and wewill therefore
refer to edges by their labels{Ce,a,Ce,b|De} =̂ {i(e), j(e)|D(e)}. An exemplary
regular vine on five elements is shown in Figure 2.1.

Given these sets, we can specify a regular vine copula by associating a (condi-
tional) bivariate copula to each edge of the regular vine, a so-called pair copula.

Definition 2.2 (Regular Vine Copula).A regular vine copula C = (V ,B (V ) ,
θ (B (V ))) in n dimensions is a multivariate distribution function such that for a
random vectorU = (U1, . . . ,Un)

′ ∼C with uniform margins

1. V is a regular vine onn elements,
2. B(V ) =

{

Ci(e), j(e)|D(e)|e∈ Em, m= 1, . . .n−1
}

is a set ofn(n− 1)/2 copula
families identifying the conditional distributions ofUi(e),U j(e)|UD(e),

3. θ(B(V )) =
{

θ i(e), j(e)|D(e)|e∈ Em, m= 1, . . .n−1
}

is the set of parameter vec-
tors, corresponding to the copulas inB (V ).
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Fig. 2.1 Regular vine on five elements.

Therefore the full specification of a regular vine copula consists of three lay-
ers: the regular vine tree structureV , the pair copula familiesB = B(V ) and the
pair copula parametersθ = θ(B(V )). Regular vine copulas which differ in the tree
structure or in at least one pair copula family represent in general different statisti-
cal models. Notable exceptions from this are the multivariate Gaussian, Student’s t
or Clayton copulas, which can be decomposed into bivariate Gaussian, Student’s t
or Clayton copulas, respectively, in multiple ways (see [63]). The probability den-
sity function f1:n at pointx = (x1, . . . ,xn)

′ ∈ R
n of an n-dimensional regular vine

dependent distributionF1:n is easily calculated as

f1:n (x|V ,B,θ ) =

(

n−1

∏
m=1

∏
e={a,b}∈Em

ci(e), j(e)|D(e)

(

Fi(e)|D(e),Fj(e)|D(e)|θ i(e), j(e)|D(e)

)

)

× f1 (x1) · · · fn (xn) , (2.2)

whereFi(e)|D(e) := Fi(e)|D(e)

(

xi(e)|xD(e)

)

andFj(e)|D(e) := Fj(e)|D(e)

(

x j(e)|xD(e)

)

(see
[8]). These conditional distribution functions can be determined recursively tree-by-
tree using the following relationship

F i(e)|D(e)

(

xi(e)|xD(e)

)

= FCe,a|De

(

xCe,a|xDe

)

=
∂CCa,a1 ,Ca,a2 |Da

(

FCa,a1|Da

(

xCa,a1
|xDa

)

,FCa,a2|Da

(

xCa,a2
|xDa

)

)

∂FCa,a2|Da

(

xCa,a2
|xDa

) ,
(2.3)

wheree= {a,b} with a = {a1,a2} as before (see [23] for details).
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To facilitate inference, it is assumed that the pair copulasCi(e), j(e)|D(e) only de-
pend on the variables with indices inD(e) through the argumentsFi(e)|D(e) and
Fj(e)|D(e). This so-called simplifying assumption has been investigated by [34] and
[63]. In particular, [34] show examples where the assumption is not severe and [63]
show that the multivariate Clayton copula is the only Archimedean copula which
can be represented as a simplified vine. A critical look on thesubject can be found
in [2] who take a first step in building vine copulas of non-simplified structure.

Following Expression (2.2), the likelihoodL of a regular vine copulaC =
(V ,B,θ ) given the observed datax = (x1, . . . ,xN)′ ∈ R

N×n can be calculated as

L(V ,B,θ |x) =
N

∏
k=1

f1:n (xk|V ,B,θ ) . (2.4)

The corresponding log-likelihood is denoted byℓ.
A regular vine copula is said to betruncated at level Mif all pair copulas condi-

tioning onM or more variables are set to bivariate independence copulas[14]. As a
result, the iteration indexmof the first product in Equation (2.2) runs only up tom=
M and the distribution is fully specified by

(

V = (T1, . . . ,TM),B(V ),θ (B(V ))
)

.
In the following, we now discuss in reverse order how the components of a reg-

ular vine copula can be selected and estimated. That is, we begin with estimation
of the parametersθ , then treat the selection of appropriate copula familiesB, and
finally discuss the selection of vine treesV .

2.3 Parameter Estimation for Given Vine Tree Structure and
Pair Copula Families

Given a vine tree structureV and pair copula familiesB = B(V ), the challenge is
to estimate the parametersθ = θ (B(V )) of a regular vine copula for observed data
x ∈ R

N×n. The crucial point of this task are the conditional distribution functions
Fi(e)|D(e), which depend on copulas of previous trees (see (2.3)).

2.3.1 Maximum Likelihood Estimation

Classically, parameters of a statistical model are often estimated using maximum
likelihood techniques. Here, this means that regular vine copula parametersθ and
parameters of the marginal distributions are estimated by maximizing the likelihood
(2.4) in terms of these parameters. For copulas, in particular if n > 2, the number
of parameters to be estimated may however be too large, so that one typically ei-
ther uses empirical distribution functions for the marginsas proposed by [25, 26]
or estimates parameters of the marginal distributions in a first step and then fixes
these marginal parameters to their estimated values in the estimation of the copula
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parameters. The latter method is called inference functions for margins (IFM) by
[38, 37].

But even when estimation of marginal and dependence parameters is separated,
joint maximum likelihood estimation of regular vine copulaparameters can be very
challenging, since the vine decomposition involvesn(n− 1)/2 bivariate copulas
with corresponding parameters. [1] therefore proposed a sequential method: starting
with the copulas of the first tree, this method proceeds tree-wise and estimates the
parameters of the copulas in a tree by fixing the parameters ofcopulas in all previous
trees.

Example 2.1 (Sequential Estimation).Let the 5-dimensional regular vineV of Fig-
ure 2.1 be given with copulasB(V ). In the first step, we estimate the parameters of
the copulasC1,2, C2,3, C3,4 andC3,5 using maximum likelihood based on the trans-
formed observationsFj(xk j) for xk j, k = 1, ...,N, j = 1, ...,5. In the second tree, we
then have to estimate for instance the parameter(s) of the copulaC1,3|2. For this we

form pseudo-observationsF1|2(xk1|xk2, θ̂ 1,2) andF3|2(xk3|xk2, θ̂ 2,3), k = 1, ...,N, ac-
cording to Expression (2.3) and using the estimated parameters of copulasC1,2 and
C2,3, respectively. Based on these pseudo-observations estimation of θ 1,3|2 is again
straightforward. Similarly for all other copulas.

Note that this strategy only involves estimation of bivariate copulas and therefore
is computationally much simpler than joint maximum likelihood estimation of all
parameters at once. For more details see [1] as well as [32] who investigates the
asymptotic properties of this sequential approach. A comparison study of estimators
for regular vine copulas can be found in [33].

If joint maximum likelihood estimates are desired, the sequential method can be
used to obtain starting values for the numerical optimization. A detailed discussion
how to compute score functions and the observed informationmatrix for regular
vine copulas is provided by [64].

2.3.2 Bayesian Posterior Estimation

Bayesian statistics considers parametersθ as random variables. As such, inference
focuses on estimating the entire distribution of the parameters instead of only finding
a point estimate. In particular, the so-called posterior distribution p(θ) := p(θ |x),
the distribution of the parametersθ given the observed datax, is the main object
of interest. The unnormalized posterior density factorizes into the product of the
likelihood functionL(θ |x) (2.4) and the prior density functionπ(θ):

p(θ) := p(θ |x) =
L(θ |x) ·π(θ)

f (x)
∝ L(θ |x) ·π(θ).

The prior distribution incorporates a priori beliefs aboutthe distribution of the pa-
rameters. It must not depend on, or be conditional upon, the observed data.
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Markov chain Monte Carlo (MCMC) procedures clear the remaining obstacle of
sampling from a distribution which is known only up to a constant. The trick is to
simulate the run of a Markov chain whose equilibrium distribution is the targeted
posterior distributionp(θ ) of the parametersθ . Upon convergence of the Markov
chain, its states represent draws from the desired distribution.

The Metropolis–Hastings algorithm [48, 30] implements thesimulation of such
a Markov chain through an acceptance/rejection mechanism for the updates of the
chain: in a first step, an update of the chain from its current stateθ to θ ∗ ∼ q(·|θ )
is proposed. The proposal distributionq can be chosen almost arbitrarily. In the sec-
ond step, the proposal is accepted with probabilityα := α(θ ,θ ∗). The acceptance
probabilityα is chosen such that convergence of the Markov chain to the targeted
distribution is guaranteed by Markov chain theory [49]. TheMetropolis–Hastings
acceptance probability for convergence to the target distribution p(·) is

α(θ ,θ ∗) =
p(θ ∗)

p(θ )
·
q(θ |θ ∗)

q(θ∗|θ )
.

The target distribution goes into the Metropolis–Hastingsalgorithm only at the eval-
uation of the acceptance probabilityα. It can be easily seen that it is sufficient to
know the density function of the target distribution only upto a constant for this
algorithm to work, given thatα only depends on the ratio of two densities.

The following Metropolis–Hastings scheme to sample from the posterior distri-
bution of the parametersθ of a regular vine copula is proposed in [61] and [28]. The
authors suggest normally distributed random walk proposals be used in the update
step.

Algorithm 2.1 (Metropolis–Hastings Sampler for ParameterEstimation)
1: Choose arbitrary starting valuesθ 0 = (θ 0

1 , . . . ,θ 0
D)′, where D:= n(n−1)/2.

2: for each iteration r= 1, . . . ,R do
3: Setθ r = θ r−1.
4: for i = 1, ...,D do
5: Draw θ r

i from a N(θ r−1
i ,σ2

i ) distribution with probability density function
φ(θ r−1

i ,σ2
i )(·).

6: Evaluate the Metropolis–Hastings acceptance probabilityof the proposal

α := α(θ r−1
i ,θ r

i ) =
p(θ∗)

p(θ )
·

φ(θ r
i ,σ2

i )(θ
r−1
i )

φ(θ r−1
i ,σ2

i )(θ
r
i )

=
L(θ ∗|x)

L(θ |x)
·

π(θ∗)

π(θ)
,

whereθ ∗ = (θ r
1, . . . ,θ r

i ,θ r−1
i+1 , . . . ,θ r−1

D )′

andθ = (θ r
1, . . . ,θ r

i−1,θ
r−1
i , . . . ,θ r−1

D )′.
7: Accept the proposalθ r

i with probabilityα; if rejected, setθ r
i = θ r−1

i .
8: end for
9: end for

10: return (θ 1, . . . ,θ R)
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2.4 Selection of the Pair Copula Families and their Parameters
for a Known Vine Tree Structure

An n-dimensional regular vine copula with tree structureV is based on a setB(V )
of n(n−1)/2 bivariate copulas and their corresponding parameters. The copula fam-
ilies can be chosen arbitrarily, e.g., from the popular classes of Archimedean, ellip-
tical or extreme-value copulas. Assuming that an appropriate vine structureV is
chosen, the question therefore is how to select adequate (conditional) pair copulas
Ci(e), j(e)|D(e) and their parameters for given datax.

2.4.1 Sequential Selection

If a regular vine is truncated at level 1—that is the copulas in treesT2 to Tn−1 are
set to independence—, the corresponding regular vine copula reduces to the prod-
uct of unconditional bivariate copulasCi(e), j(e) which can be selected based on data
Fi(e)(xk,i(e)) andFj(e)(xk, j(e)), k = 1, ...,N. Typical criteria for copula selection from
a given set of families are information criteria such as the AIC as proposed by
[46] and [11]. The latter compares AIC-based selection to three alternative selec-
tion strategies: selection of family with highestp-value of a copula goodness of fit
test based on the Cramér-von Mises statistic, with smallest distance between em-
pirical and modeled dependence characteristics (Kendall’s τ, tail dependence), or
with highest number of wins in pairwise comparisons of families using the test by
[65]. In a large-scale Monte Carlo study the AIC turned out tobe the most reliable
selection criterion.

In a general regular vine, the selection of a pair copulaCi(e), j(e)|D(e) however
depends on the choices for copulas in previous trees due to its arguments (2.3). Since
a joint selection seems infeasible because of the many possibilities, one typically
proceeds tree by tree as in the sequential estimation method. That is, instead of
estimating the parametersθ i(e), j(e)|D(e) of Ci(e), j(e)|D(e), the copula is selected first
and then estimated, which usually coincides for most selection strategies. Given the
selected and estimated copulas of previous trees, one then selects the copulas of the
next tree.

Example 2.2 (Sequential Selection).Again consider the five-dimensional regular
vine V of Figure 2.1 but now with unknown copulasB(V ). In the first tree, we
select (and then estimate) the copulasC1,2, C2,3, C3,4 andC3,5 using our method
of choice based onFj(xk j), k = 1, ...,N, j = 1, ...,5. Given these copulas, we
then have to select conditional copulas in the second tree. In case of the cop-
ula C1,3|2, we therefore again form the pseudo-observationsF1|2(xk1|xk2, θ̂ 1,2) and

F3|2(xk3|xk2, θ̂ 2,3), k = 1, ...,N, according to Expression (2.3) and then select (and
estimate)C1,3|2 based on them. This can be iterated for all trees.

Clearly this sequential selection strategy accumulates uncertainty in the selection
and therefore the final model has to be carefully checked and compared to alternative
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models. For the latter, the tests for non-nested model comparison by [65] and [18]
may be used.

2.4.2 Reversible Jump MCMC-Based Bayesian Selection

Bayesian copula family and parameter selection aims at estimating the joint pos-
terior distribution of the pair copula familiesB = B(V ) and parametersθ =
θ (B(V )). The posterior density function factorizes into the product of the like-
lihood functionL (2.4) and the prior density functionπ : p(B,θ ) ∝ L(B,θ |x) ·
π(B,θ ).

As in Section 2.4.1, family selection is understood in the context of choosing
from a pre-specified setB of parametric pair copula families. Model sparsity can be
induced through the choice of prior distributions which favor regular vine copulas
with fewer parameters over those with more parameters.

Bayesian techniques to select the pair copula families of D-vine copulas are cov-
ered in [50], [51] and [60]. The reversible jump MCMC algorithm presented in this
section follows the latest developments of family selection methods for regular vine
copulas laid out in [28].

Reversible jump Markov chain Monte Carlo is an extension of ordinary MCMC
to sample from discrete-continuous posterior distributions. The sampling algorithm
and the mathematics underpinning the convergence statements are an immedi-
ate generalization of the Metropolis–Hastings algorithm [27]. A reversible jump
MCMC algorithm functions like an ordinary MCMC algorithm with one extra step
built in: before, or after, updating the parameters, a “jump” to another model is
attempted. That is called the “between-models move,” whilethe updating of the
parameters only is called the “within-model move” [16].

Algorithm 2.2 implements a reversible jump MCMC sampler which samples
from the joint posterior distribution of the pair copula families B and the param-
etersθ , given a regular vine tree structureV . In each iteration, it first updates all
parameters as in Algorithm 2.1. Then the pair copula families are updated along
with their parameters one-by-one. The pair copula family proposals are drawn from
a uniform distribution overB, while the parameter proposals are sampled from a
(multivariate) normal distribution centered at the maximum likelihood estimates of
the parameters.

Algorithm 2.2 (Reversible Jump MCMC Sampler for Family Selection)
1: Choose arbitrary copula family and parameter starting values (B0,θ 0) =

((B0
1,θ 0

1), . . . ,(B
0
D,θ 0

D)), where D:= n(n−1)/2.
2: for each iteration r= 1, . . . ,R do
3: Set(Br ,θ r) = (Br−1,θ r−1).
4: Perform one update step of Algorithm 2.1 for the parametersθ r ; denote the

updated parameter entries byθ+.
5: for i = 1, ...,D do
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6: Draw Br
i from a Uni f(B) distribution.

7: Draw θ r
i from a multivariate N(θ̂ r

i , Σ̂ r
i ) distribution with probability den-

sity functionφ(θ̂ r
i ,Σ̂ r

i )(·). Hereθ̂ r
i denotes the MLE of the copula parameters

of the pair copulaBr
i andΣ̂ r

i denotes the estimated approximative covari-
ance matrix of the parameter estimatesθ̂ r

i .
8: Evaluate the generalized Metropolis–Hastings acceptanceprobability of

the proposal

α := α((Br−1
i ,θ+

i ),(Br
i ,θ

r
i ))

=
p(B∗,θ ∗)

p(B,θ )
·

φ
(θ̂ r−1

i ,Σ̂ r−1
i )

(θ+
i )

φ(θ̂ r
i ,Σ̂ r

i )(θ
r
i )

=
π(B∗,θ ∗)

π(B,θ )
·
L(B∗,θ ∗|x)

L(B,θ |x)
·

φ
(θ̂ r−1

i ,Σ̂ r−1
i )

(θ+
i )

φ(θ̂ r
i ,Σ̂ r

i )(θ
r
i )

,

whereB∗ = (Br
1, . . . ,B

r
i ,B

r−1
i+1 , . . . ,Br−1

D ),
B = (Br

1, . . . ,B
r
i−1,B

r−1
i , . . . ,Br−1

D ), θ∗ = (θ r
1, . . . ,θ r

i ,θ
+
i+1, . . . ,θ

+
D), and

θ = (θ r
1, . . . ,θ

r
i−1,θ

+
i , . . . ,θ+

D).
9: Accept the proposal(Br

i ,θ r
i ) with probabilityα; if rejected, set(Br

i ,θ r
i )=

(Br−1
i ,θ+

i ).
10: end for
11: end for
12: return ((B1,θ 1), . . . ,(BR,θ R))

2.5 Selection of Vine Tree Structure, Pair Copula Families and
Parameters

As pair copula familiesB = B(V ) and parametersθ = θ(B(V )) both depend
on the vine tree structureV , the identification of adequate trees is crucial to the
model building process using vine copulas. As it was alreadythe case for pair copula
selection in Section 2.4.1, it is again not feasible to simply try and fit all possible
regular vine copulasC = (V ,B,θ ) and then choose the ‘best’ one. In particular, the

number of possible regular vines onn variables isn!
2 ×2(n−2

2 ) as shown by [52]. This
means that even if pair copulas and parameters were known, the number of different
models would still be enormous.

This remains true even when the selection is restricted to the sub-classes of C-
and D-vines, since there are stilln!/2 different C- and D-vines inn dimensions,
respectively (see [1]). It should however be noted that C- and D-vine copulas are
most appropriate if their structure is explicitly motivated by the data. In particular,
C-vine copulas may be used if there is a set of pivotal variables such as stock indices
(see [31, 12]) and D-vine copulas are particularly attractive to model variables with
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temporal order (see [60, 13]). Nevertheless we describe howC- and D-vines can be
selected for arbitrary data sets.

2.5.1 Top-Down and Bottom-Up Selection

Due to the proximity condition (see Definition 2.2) regular vine trees are closely
linked to each other and have to be constructed carefully. Two construction strategies
have been proposed in the literature: a top-down approach by[23] and a bottom-up
method by [42]. Both strategies proceed sequentially tree by tree and respect the
proximity condition in each step. We first describe the top-down, then the bottom-
up method.

2.5.1.1 Top-Down Selection

Selecting regular vine trees top-down means that one startswith the selection of the
first treeT1 and continues tree by tree up to the last treeTn−1. The first treeT1 can
be selected as an arbitrary spanning tree. Given that a treeTm, m∈ {1, ...,n− 2},
has been selected, the next treeTm+1 is chosen respecting the proximity condition
(see Definition 2.2). In other words,Tm+1 can only be formed by (conditional) pairs
{i(e), j(e)|D(e)} which fulfill the proximity condition.

Example 2.3 (Top-Down Tree Selection).Assume that we have selected the first tree
T1 as shown in Figure 2.1. Then the question is which pairs{i(e), j(e)|D(e)} are
eligible for tree construction in the second treeT2. According to the proximity con-
dition these are{1,3|2}, {2,4|3}, {2,5|3} and{4,5|3}. Obviously, the last three
pairs form a cycle and therefore only two of them can be selected forT2. One of the
three possibilities is shown in Figure 2.1.

To perform this iterative selection strategy a criterion isneeded to select a span-
ning tree among the set of eligible edges, where a spanning tree simply denotes a
tree on all nodes. Clearly, the log-likelihoodℓm of the pair copulas in treeTm of a
regular vine copula (see Expression (2.4)) is given by

ℓm(Tm,BTm,θ Tm|x) =
N

∑
k=1

∑
e∈Em

log
(

ci(e), j(e)|D(e)

(

Fi(e)|D(e),Fj(e)|D(e)|θ i(e), j(e)|D(e)

))

,

(2.5)
where we writeBTm := B(Tm) andθ Tm := θ (B(Tm)).

A straightforward solution therefore would be to choose thetree such that (2.5)
is maximized after having selected pair copulas with high log-likelihood for each
(conditional) pair{i(e), j(e)|D(e)} which fulfills the proximity condition. This so-
lution however leads to highly over-parameterized models,since models with more
parameters in which simpler models are nested will always give a higher likelihood.
For instance, the Student’s t copula always has a higher likelihood value than the
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Gaussian copula which is a special case of the Student’s t as the degrees of freedom
go to infinity.

Therefore we formulate the following algorithm in terms of ageneral weight
ω assuming that we want to maximize it for each tree. The previously discussed
strategy corresponds to choosing the pair copula log-likelihoods as weights.

Algorithm 2.3 (Sequential Top-Down Selection Based on Weights)
1: Calculate the weightωi, j for all possible variable pairs{i, j},1≤ i < j ≤ n.
2: Select the maximum spanning tree, i.e.

T1 = argmax
T=(N,E) spanning tree

∑
e∈E

ωi(e), j(e).

3: for each edge e∈ E1 do
4: Select a copula Ci(e), j(e).
5: Estimate the corresponding parameter(s)θ i(e), j(e).

6: For k = 1, ...,N transform Fi(e)| j(e)(xk,i(e)|xk, j(e), θ̂ i(e), j(e)) and

Fj(e)|i(e)(xk, j(e)|xk,i(e), θ̂ i(e), j(e)) using(2.3).
7: end for
8: for m= 2, . . . ,n−1 do
9: Calculate the weightωi(e), j(e)|D(e) for all conditional variable pairs

{i(e), j(e)|D(e)} that can be part of tree Tm, i.e., all edges EP fulfilling the
proximity condition.

10: Among these edges, select the maximum spanning tree, i.e.,

Tm = argmax
T=(N,E) spanning tree with E⊂EP

∑
e∈E

ωi(e), j(e)|D(e).

11: for each edge e∈ Em do
12: Select a conditional copula Ci(e), j(e)|D(e).
13: Estimate the corresponding parameter(s)θ i(e), j(e)|D(e).

14: For k = 1, ...,N transform Fi(e)| j(e)∪D(e)(xk,i(e)|xk, j(e),xk,D(e), θ̂ i(e), j(e)|D(e))

and Fj(e)|i(e)∪D(e)(xk, j(e)|xk,i(e),xk,D(e), θ̂ i(e), j(e)|D(e)) using(2.3).
15: end for
16: end for
17: return the sequential model estimate(V̂ ,B̂, θ̂ ).

Clearly, this algorithm only makes a locally optimal selection in each step, since
the impact on previous and subsequent trees is ignored. The strategy is however rea-
sonable in light of the definition of regular vines (see Definition 2.2). The maximum
spanning tree in lines 2 and 10 can be found, e.g., using the classical algorithms by
Prim or Kruskal (see [19, Section 23.2]). Possible choices for the weightω are, for
example,

• the absolute empirical Kendall’sτ as proposed by [23] and [22];
• the AIC of each pair copula corresponding to the discussion in Section 2.4.1;
• the (negative) estimated degrees of freedom of Student’s t pair copulas (see [47]);
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• the p-value of a copula goodness of fit test and variants as proposed by [21].

Some remarks: First, taking the empirical Kendall’sτ as weight does not require
to select and estimate pair copulas prior to the tree selection step. The other three
weights in fact require this, so that lines 4-5 and 12-13 in Algorithm 2.3 may be
redundant in this case. Second, the AIC as weight also maximizes the AIC of the
complete tree, since the individual AICs can be summed up like the log-likelihood.
Third, the strategy proposed by [47] concentrates on tail dependence, since the al-
gorithm will select pairs with estimated small degrees of freedom corresponding to
a stronger deviation from Gaussianity with no tail dependence.

Copula goodness of fit tests based on the Cramér-von Mises statistic are consid-
ered in [21] to take into account the uncertainty of the pair copula fit. Correspond-
ing p-values are calculated using fast bootstrap methods based on the multiplier
approach developed and implemented in [39, 40, 41].

Finally, we like to note that the empirical Kendall’sτ as weight also approxi-
mately maximizes (2.5), since it can be checked that typically log-likelihoods of
bivariate copulas increase with increasing absolute valueof Kendall’sτ. It however
does not lead to over-parameterization, since copula selection and tree selection in
a particular tree are independent. The strategy by [23] has therefore already been
used successfully in applications with up to 52 variables (see [12]).

Recently, [35] proposed the construction of vines with non-parametric pair cop-
ulas based on empirical copula estimators. For vine tree selection [35] also advocate
the use of empirical dependence measures such as Spearman’sρ , since it does not
require any parametric assumption on the pair copulas. Other dependence measures
such as Blomqvist’sβ could of course be used instead in the approaches by [23]
and [35].

Especially the strategy based on Kendall’sτ leads to regular vine copulas with
decreasing dependence in higher order trees. This is advantageous to the vine struc-
ture, since numerical errors may add up and estimates becomeless precise as the
number of conditioning variables increases. It also has been exploited by [14] to
identify appropriate truncation levels of regular vine copulas.

Algorithm 2.3 can easily be modified to select C- or D-vines instead of general
regular vines. For C-vines the root node in each tree can simply be identified as the
node with maximal sum of weights to all other nodes (see [22]). In the case of D-
vines only the order of variables in the first tree has to be chosen. Since D-vine trees
are paths on all nodes, so-called Hamiltonian paths, a maximum Hamiltonian path
has to be identified. This problem is equivalent to a traveling salesman problem as
discussed by [11]. As an NP-hard problem, there is no known efficient algorithm to
find a solution.

2.5.1.2 Bottom-up selection

Rather than beginning with the first treeT1, [42] proposed a bottom-up selec-
tion strategy which starts with treeTn−1 and then sequentially selects treesTm for
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m = n− 2, ...,1. Similar to top-down selection using Kendall’sτ by [23], this ap-
proach is also motivated by choosing a regular vine with weaker dependence in later
trees. Here, dependence is however measured in terms of partial correlations. More
precisely, each tree is selected such that the sum of absolute partial correlations as
edge weights is minimized. This is feasible, since partial correlation estimates for
each combination of variables can be obtained from the data without any parametric
assumptions (see, e.g., [66]).

The bottom-up strategy by [42] thus selects treeTn−1 as the edge corresponding
to the pair of variable with lowest absolute partial correlation given all other vari-
ables. [42] then provides conditions such that the proximity condition is satisfied
when a treeTm, m∈ {1, ...,n−2}, is selected given treesTm+1, ...,Tn−1. As before
there may be several choices possible in the set of eligible edges.

Example 2.4 (Bottom-Up Tree Selection).Assume in Figure 2.1 that we have se-
lectedT4 with edgee= {a,b} = {1,5|2,3,4} as shown. ThenAa = {1,2,3,4} and
Ab = {2,3,4,5} (see (2.1)). Any choice of edges fromAa andAb in treeT3 leads
to a valid treeT4. For instance, the edges{1,2|3,4} and{4,5|2,3} are compatible
with Aa andAb, respectively, and would lead to another vine than the one shown in
Figure 2.1. In fact, it could be constructed as a D-vine with order 1,4,3,2,5.

Since partial correlations are equal to conditional correlations for elliptical dis-
tributions (see [5]), this strategy is particularly appropriate if all pair copula families
are elliptical. Contrariwise to the top-down approach discussed above which re-
quires the selection and estimation of pair copulas in each tree, this strategy chooses
the vine tree structure without any assumption on the pair copula families. Having
selected the vine tree structure, the selection of pair copulas can therefore proceed
as discussed in Section 2.4.1.

2.5.2 Sequential Bayesian Tree Selection

Bayesian approaches to estimating the posterior distribution of the tree structure
of a regular vine copula have only recently been developed. The sheer number of
possible regular vine tree structures poses a relevant challenge to computationally
efficient posterior evaluation.

This section presents a reversible jump MCMC-based approach proposed by [28]
to obtain a sequential estimate of the posterior distribution of the regular vine tree
structureV , the pair copula familiesB, and the copula parametersθ . The term
“sequential estimation” is understood analogously to the notion discussed in Section
2.5.1.1 as a tree-by-tree procedure.

As in Section 2.4.2, model priorsπ(V ,B,θ ) which favor sparse models can
serve to guard against selecting models with runaway complexity. On the other hand,
the use of non-informative flat priors allows for tree-by-tree maximum likelihood
estimation of the regular vine tree structureV , the pair copula familiesB, and the
copula parametersθ . As a result, the posterior mode estimate of this procedure will
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agree with the model estimate of Algorithm 2.3, if flat priorsare used. Again, the
pair copula families are chosen from a setB of parametric pair copula families.

For the sake of notational convenience and enhanced readability, the procedure is
presented in two algorithms. Algorithm 2.4 gives the general outline of the sampling
procedure. Algorithm 2.5 details the reversible jump MCMC algorithm to sample
from the posterior distribution of treeTm of the regular vine tree structureV =
(T1, . . . ,Tn−1).

Algorithm 2.4 implements the tree-by-tree selection procedure. As such, it calls
Algorithm 2.5 for the actual posterior estimation. However, it condenses the poste-
rior sample into the posterior mode estimate and organizes the move from selecting
treeTm to selecting treeTm+1. The posterior mode estimate(T̂m,B̂Tm, θ̂ Tm) of tree
Tm is the most frequently sampled combination of tree structureTm and pair copula
familiesBTm parameterized at the mode of the posterior sample of the parameters
θ Tm of this model.

Algorithm 2.4 (Outline of the Tree-by-Tree Sampling Algorithm)
1: Sample from the posterior distribution of the first tree,(T1,BT1,θ T1): see Algo-

rithm 2.5.
2: Set the tree estimate(T̂1,B̂T1, θ̂ T1) to the posterior mode.
3: for m= 2, ...,n−1 do
4: Sample from the posterior distribution of the m-th tree,(Tm,BTm,θ Tm), given

the previous trees’ estimates(T̂1,B̂T1, θ̂ T1), . . . ,(T̂m−1,B̂Tm−1, θ̂ Tm−1): see Al-
gorithm 2.5.

5: Set the tree estimate(T̂m,B̂Tm, θ̂ Tm) to the posterior mode.
6: end for
7: return the sequential Bayesian model estimate

(V̂ ,B̂, θ̂ ) = ((T̂1, . . . , T̂n−1),(B̂T1 , . . . ,B̂Tn−1),(θ̂ T1, . . . , θ̂ Tn−1)).

Algorithm 2.5 samples from the posterior distribution of(Tm,BTm,θ Tm) given the
previously selected trees((T̂l ,B̂Tl , θ̂ Tl ), l = 1, . . . ,m−1). The within-model move
of this algorithm to update the pair copula parametersθ follows Algorithm 2.1. In
the between-models move, the proposal trees are sampled as spanning trees which
satisfy the proximity condition. Practitioners may note that this functionality is im-
plemented, e.g., in the C++boost library [58]. Edge weights can be used to fine-
tune the variance of the proposal distribution: in our implementation, higher values
for p∈ (0,1) increase the probability that the proposals for the tree structure,Tr

m, are
similar to the current stateT r−1

m of the sampling chain. As in Algorithm 2.2, the pair
copula family proposals are sampled from a uniform distribution overB, and the
parameter proposals are drawn from a (multivariate) normaldistribution centered at
the maximum likelihood estimates of the parameters.

Algorithm 2.5 (Reversible Jump MCMC Algorithm to Sample (Tm,BTm,θ Tm))

Denote the pair copula families of tree Tm = (Nm,Em) byBTm = (Be,e∈ Em), and
the corresponding pair copula parameters byθ Tm = (θ e,e∈ Em).
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1: Choose arbitrary, but valid, tree structure, copula familyand parameter starting
values(T0

m,B0
Tm

,θ 0
Tm

). If m≥ 2, observe the proximity condition imposed on T0
m.

2: for each iteration r= 1, . . . ,R do
3: Set(T r

m,Br
Tm

,θ r
Tm

) = (T r−1
m ,Br−1

Tm
,θ r−1

Tm
).

4: Perform one update step of Algorithm 2.1 for the pair copula parameters of
tree Tm, θ r

Tm
; denote the updated parameter entries byθ+

Tm
.

5: Draw a spanning tree Trm which satisfies the proximity condition from the
proposal distribution

q(Tr−1
m = (Nm,Er−1

m ) → Tr
m = (Nm,Er

m)) ∝ p|E
r
m∩Er−1

m |(1− p)|E
r
m\Er−1

m |.

6: for each edge e∈ Er
m do

7: Draw Br
e from a Uni f(B) distribution.

8: Draw θ r
e from a multivariate N(θ̂ r

e, Σ̂ r
e) distribution with probability den-

sity functionφ(θ̂ r
e,Σ̂ r

e)(·). Here θ̂ r
e denotes the MLE of the copula param-

eters of the pair copulaBr
e and Σ̂ r

e denotes the estimated approximative
covariance matrix of the parameter estimatesθ̂ r

e.
9: end for

10: SetBr
Tm

= (Br
e,e∈ Er

m), θ r
Tm

= (θ r
e,e∈ Er

m).
11: Evaluate the generalized Metropolis–Hastings acceptanceprobability of the

proposal

α := α((T r−1
m ,Br−1

Tm
,θ+

Tm
),(T r

m,Br
Tm

,θ r
Tm

))

=
p(V ∗,B∗,θ ∗)

p(V ,B,θ )
·

∏e∈Er−1
m

φ
(θ̂ r−1

e ,Σ̂ r−1
e )

(θ+
e )

∏e∈Er
m

φ(θ̂ r
e,Σ̂ r

e)(θ r
e)

=
π(V ∗,B∗,θ ∗)

π(V ,B,θ )
·
L(V ∗,B∗,θ ∗|x)

L(V ,B,θ |x)
·

∏e∈Er−1
m

φ
(θ̂ r−1

e ,Σ̂ r−1
e )

(θ+
e )

∏e∈Er
m

φ(θ̂ r
e,Σ̂ r

e)(θ r
e)

,

whereV ∗ = (T̂1, . . . , T̂m−1,Tr
m), V = (T̂1, . . . , T̂m−1,T r−1

m ),
B∗ = (B̂T1, . . . ,B̂Tm−1,B

r
Tm

), B = (B̂T1, . . . ,B̂Tm−1,B
r−1
Tm

),

θ ∗ = (θ̂ T1, . . . , θ̂ Tm−1,θ r
Tm

), andθ = (θ̂ T1, . . . , θ̂ Tm−1,θ
+
Tm

).
12: Accept the proposal(T r

m,Br
Tm

,θ r
Tm

) with probabilityα; if rejected,

set(T r
m,Br

Tm
,θ r

Tm
) = (T r−1

m ,Br−1
Tm

,θ+
Tm

).
13: end for
14: return ((T1

m,B1
Tm

,θ 1
Tm

), . . . ,(TR
m ,BR

Tm
,θ R

Tm
))

2.6 Conclusions and Outlook

We have focused on the various model selection and estimation methods for regular
vine copulas. Since a regular vine model is specified by threelinked components,
this results in three fundamental tasks with increasing complexity. We discussed fre-
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quentist and Bayesian approaches for each of these tasks. Inparticular this involved
sequential approaches starting from the top tree until the last tree. The frequentist
approaches are implemented in the R-packagesCDVine [15, 56] for D- and C-vines
andVineCopula [57] for regular vines, respectively.

In view of the linked nature of the vine tree structure the sequential approach is a
natural approach. However as in the case of covariate selection in linear models, this
might not yield the best fit to the data. In addition the approaches so far primarily
considered in-sample fit and model comparisons, more empirical work is needed to
validate the models in an out-of-sample performance study.However this is now
feasible and tractable and is the subject of current investigations.

It has been recently recognized by [2] that even the flexible class of simplified
regular vines might be insufficient for some data sets. This might be the result that
the underlying joint density is not well approximated by a simplified regular vine
density, where the conditional copula family terms are chosen to be independent of
the conditioning value. Currently the proposed solution of[2] using non-parametric
two-dimensional smoothing methods is limited to three dimensions and it will be
a major challenge to extend the model and the selection methods to higher dimen-
sions.

Other non-standard vine models occur when the pair copula terms depend on the
conditioning time point, thus yielding models with time varying copula parameters.
These can also be seen as non-simplified vines in the special case that the con-
ditioning variables follow a functional relationship to time. First parameter driven
time dependence was considered using an AR(1) dynamics in the copula parameters
in the papers by [3] and [4], while [61] follow a regime switching approach. Here
only parameter estimation and assessment of the uncertainty of the parameters are
considered so far. It has to be investigated if the additional flexibility of the copula
families and the different vine tree structures is needed here.

This survey primarily focused on the selection and estimation problem of regular
vines with parametric pair copula families. The approach of[35] can be compared
to ones which are based on kernel methods as proposed in [7] and [55].

Other data structures than multivariate continuous data have also gained by mod-
els based on pair copula constructions. In particular network structures were consid-
ered by [29] and [43] in a primarily Gaussian set-up and by [7]in a non-Gaussian
setting. Here the network is modeled by a directed acyclic graph (DAG) model.
While learning the network structure from data is a very complex task even in Gaus-
sian DAG models, non-Gaussian learning algorithms are currently developed and
investigated in [6].

Another very interesting multivariate data structure are discrete and mixed dis-
crete-continuous outcomes which occur most often in the life sciences. Pair copula
constructions using D-vines for discrete outcomes were recently developed in [54]
together with highly efficient parameter estimation techniques. Current research is
conducted to allow for mixed outcomes [62].

While these extensions are still concerned primarily with parameter estimation, it
remains an important open challenge to find non-sequential solutions to the selection
of regular vines when all three components have to be selected.
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